In a circle of diameter $40 \,cm ,$ the length of a chord is $20 \,cm .$ Find the length of minor arc of the chord.
Diameter of the circle $=40 \,cm$
Radius $(r)$ of the circle $=\frac{40}{2} \,cm =20\, cm$
Let $AB$ be a chord (length $= 20$ $cm$ ) of the circle.
In $\Delta O A B, O A=O B=$ Radius of circle $=20 \,cm$
Also, $A B=20\, cm$
Thus, $\Delta O A B$ is an equilateral triangle.
$\therefore \theta=60^{\circ}=\frac{\pi}{3}$ radian
We know that in a circle of radius $r$ unit, if an arc of length $l$ unit subtends an angle $\theta$ radian at the centre then
$\theta=\frac{l}{r}$
${\frac{\pi }{3} = \frac{{\widehat {AB}}}{{20}} \Rightarrow \widehat {AB} = \frac{{20\pi }}{3}\,cm}$
Thus, the length of the minor arc of the chord is $\frac{20 \pi}{3} \,cm $
Prove that:
$ 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$
The value of $\frac{{\cot 54^\circ }}{{\tan 36^\circ }} + \frac{{\tan 20^\circ }}{{\cot 70^\circ }}$ is
If $\sin \theta + \cos \theta = m$ and $\sec \theta + {\rm{cosec}}\theta = n$, then $n(m + 1)(m - 1) = $
Find the value of the trigonometric function $\cos ec \left(-1410^{\circ}\right)$
The product $\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 3^{\circ}\right)$ $. .\left(1+\tan 45^{\circ}\right)$ equals