નીચેની શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો શોધો :
$6+.66+.666+\ldots$
$6+.66+.666+\ldots$
Let $S_{n}=06+0.66+0.666+\ldots .$ to $n$ terms
$=6[0.1+0.11+0.111+\ldots . \text { to } n \text { terms }]$
$=\frac{6}{9}[0.9+0.99+0.999+\ldots . . \text { to } n \text { terms }]$
$=\frac{6}{9}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{10^{2}}\right)+\left(1-\frac{1}{10^{3}}\right)+\ldots . \text { to } n \text { terms }\right]$
$=\frac{2}{3}\left[(1+1+\ldots n \text { terms })-\frac{1}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\ldots n \text { terms }\right)\right]$
$=\frac{2}{3}\left[n-\frac{1}{10}\left(\frac{1-\left(\frac{1}{10}\right)^{n}}{1-\frac{1}{10}}\right)\right]$
$=\frac{2}{3} n-\frac{2}{30} \times \frac{10}{9}\left(1-10^{-n}\right)$
$=\frac{2}{3} n-\frac{2}{27}\left(1-10^{-n}\right)$
જો $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ તો સાબિત કરો કે $a,b,c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે.
જો $G_1 $ અને $G_2$ એ અનુક્રમે $ n_1 $ અને $n_2 $ કદની બે શ્રેણીઓના સમગુણોત્તર મધ્યકો હોય, અને $G$ એ તેમની સંયુક્ત શ્રેણીનો સમગુણોત્તર મધ્યક હોય તો $log G$ કોના બરાબર થાય છે ?
શ્રેણી $0.7, 0.77, 0.777, ......$ ના પ્રથમ $20$ પદોનો સરવાળો કેટલો થાય ?
$(1 - x) (1 - 2x) (1 - 2^2. x) (1 - 2^3. x) …. (1 - 2^{15}. x) $ ના ગુણાકારમાં $x^{15} $ નો સહગુણક મેળવો.
જો ${\text{r}}\,\, > \,\,{\text{1}}$ અને ${\text{x}}\, = \,\,{\text{a}}\, + \,\frac{a}{r}\, + \,\frac{a}{{{r^2}}}\, + \,..\,\,\infty ,\,\,y\, = \,b\, - \,\frac{b}{r}\, + \,\frac{b}{{{r^2}}} - \,..\,\,\,\infty $ અને ${\text{z}}\,\, = \,\,{\text{c}}\, + \,\frac{{\text{c}}}{{{{\text{r}}^{\text{2}}}}}\, + \,\frac{c}{{{r^4}}}\, + \,\,\,\infty ,\,$ હોય, તો $\frac{{{\text{xy}}}}{{\text{z}}}\,\, = \,...$