$(1 - x) (1 - 2x) (1 - 2^2. x) (1 - 2^3. x) …. (1 - 2^{15}. x) $ ના ગુણાકારમાં $x^{15} $ નો સહગુણક મેળવો.

  • A

    $2^{105} - 2^{121}$

  • B

    $2^{121} - 2^{105}$

  • C

    $2^{120} - 2^{104}$

  • D

    આપેલ પૈકી એકપણ નહિ.

Similar Questions

જો સમગુણોત્તર શ્રેણીના $n$ પદોનો સરવાળો $S_n$ હોય, જેનું પ્રથમ $a$ પદ અને સામાન્ય ગુણોતર $r$ તો $S_1 + S_3 + S_5 + … + S_{2n-1}$ નો સરવાળો કેટલો થાય ?

જો $x,\;y,\;z$ એ સમગુણોતર શ્નેણીમાંં હોય અને ${a^x} = {b^y} = {c^z}$ તે 

  • [IIT 1966]

જો $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\left( {x \ne 0} \right)$ હોય તો $a$, $b$, $c$, $d$ એ ......... શ્રેણીમાં છે 

એક સમગુણોત્તર શ્રેણીનું દસમું પદ $9$  અને ચોથું પદ $ 4$  હોય, તો તેનું સાતમું પદ = …

સમગુણોત્તર શ્રેણી $1+\frac{2}{3}+\frac{4}{9}+\ldots$ નાં પ્રથમ $n$ પદોનો અને પ્રથમ $5$ પદોનો સરવાળો શોધો.