Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(t)=2+t+2 t^{2}-t^{3}$
$p ( t )=2+ t +2 t ^{2}- t ^{3}$
$\because $ $p ( t )=2+ t +2 t ^{2}- t ^{3}=2+ t +2( t )^{2}-( t )^{3}$
$\therefore$ $p (0)=2+(0)+2(0)^{2}-(0)^{3}=2+0+0-0=2$
$p (1)=2+(1)+2(1)^{2}-(1)^{3}=2+1+2-1=4$
$p (2)=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(x)=(x-1)(x+1)$
Factorise of the following : $27-125 a^{3}-135 a+225 a^{2}$
Find the zero of the polynomial : $p(x) = x -5$
Factorise : $2 x^{2}+7 x+3$
Evaluate the following products without multiplying directly : $104 \times 96$