Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(t)=2+t+2 t^{2}-t^{3}$
$p ( t )=2+ t +2 t ^{2}- t ^{3}$
$\because $ $p ( t )=2+ t +2 t ^{2}- t ^{3}=2+ t +2( t )^{2}-( t )^{3}$
$\therefore$ $p (0)=2+(0)+2(0)^{2}-(0)^{3}=2+0+0-0=2$
$p (1)=2+(1)+2(1)^{2}-(1)^{3}=2+1+2-1=4$
$p (2)=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4$
Factorise : $\frac{25}{4} x^{2}-\frac{y^{2}}{9}$
Write the following cubes in expanded form : $\left[\frac{3}{2} x+1\right]^{3}$
Evaluate the following products without multiplying directly : $95 \times 96$
Without actually calculating the cubes, find the value of each of the following : $(-12)^{3}+(7)^{3}+(5)^{3}$
Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer. $y^{2}+\sqrt{2}$