Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=2 x+1, \,\,x=\frac{1}{2}$
If $x=\frac{1}{2}$ is a zero of polynomial $p(x)=2 x+1,$ then $p\left(\frac{1}{2}\right)$ should be $0 .$
Here, $p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2$
As $p\left(\frac{1}{2}\right) \neq 0$
Therefore, $x=\frac{1}{2}$ is not a zero of the given polynomial.
Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Write the following cubes in expanded form : $(2 x+1)^{3}$
Evaluate the following products without multiplying directly : $103 \times 107$
Find the remainder when $x^4+x^3-2x^2+x+1$ is divided by $x -1$.
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(t)=2+t+2 t^{2}-t^{3}$