Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=2 x+1, \,\,x=\frac{1}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If $x=\frac{1}{2}$ is a zero of polynomial $p(x)=2 x+1,$ then $p\left(\frac{1}{2}\right)$ should be $0 .$

Here, $p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2$

As $p\left(\frac{1}{2}\right) \neq 0$

Therefore,  $x=\frac{1}{2}$ is not a zero of the given polynomial.

Similar Questions

Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$

Write the following cubes in expanded form : $(2 x+1)^{3}$

Evaluate the following products without multiplying directly : $103 \times 107$

Find the remainder when $x^4+x^3-2x^2+x+1$ is divided by $x -1$.

Find $p(0)$, $p(1)$ and $p(2)$ for  of the following polynomials : $p(t)=2+t+2 t^{2}-t^{3}$