Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=2 x+1, \,\,x=\frac{1}{2}$
If $x=\frac{1}{2}$ is a zero of polynomial $p(x)=2 x+1,$ then $p\left(\frac{1}{2}\right)$ should be $0 .$
Here, $p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2$
As $p\left(\frac{1}{2}\right) \neq 0$
Therefore, $x=\frac{1}{2}$ is not a zero of the given polynomial.
Factorise of the following : $64 m^{3}-343 n^{3}$
Factorise of the following : $27 y^{3}+125 z^{3}$
Write the coefficients of $x^2$ in each of the following :
$(i)$ $\frac{\pi}{2} x^{2}+x$ $ (ii)$ $\sqrt{2} x-1$
Factorise the following using appropriate identities : $4 y^{2}-4 y+1$
Factorise $: 8 x^{3}+y^{3}+27 z^{3}-18 x y z$