Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=3 x+1, \,\,x=-\,\frac{1}{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If $x=\frac{-1}{3}$ is a zero of given polynomial $p(x)=3 x+1,$ then $p\left(-\frac{1}{3}\right)$ should be $0 .$ 

Here, $p\left(\frac{-1}{3}\right)=3\left(\frac{-1}{3}\right)+1=-1+1=0$

Therefore, $x=\frac{-\,1}{3}$ is a zero of the given polynomial.

Similar Questions

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?$\boxed{\rm {Volume}\,:12 k y^{2}+8 k y-20 k}$

Evaluate the following using suitable identities : $(102)^{3}$

Factorise : $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

Verify : $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

Find the value of each of the following polynomials at the indicated value of variables : $p(t)=4 t^{4}+5 t^{3}-t^{2}+6$ at $t=a$.