Find the principal and general solutions of the question $\tan x=\sqrt{3}$.
$\tan x=\sqrt{3}$
It is known that $\tan \frac{\pi}{3}=\sqrt{3}$ and $\tan \left(\frac{4 \pi}{3}\right)=\tan \left(\pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}=\sqrt{3}$
Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{4 \pi}{3}$
Now, $\tan x=\tan \frac{\pi}{3}$
$\Rightarrow x=n \pi+\frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+\frac{\pi}{3},$ where $n \in Z.$
The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is
If $\mathrm{n}$ is the number of solutions of the equation
$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$
and $S$ is the sum of all these solutions, then the ordered pair $(\mathrm{n}, \mathrm{S})$ is :
If $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ and $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ , then the value of $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
For each positive real number $\lambda$. Let $A_\lambda$ be the set of all natural numbers $n$ such that $|\sin (\sqrt{n+1})-\sin (\sqrt{n})|<\lambda$. Let $A_\lambda^c$ be the complement of $A_\lambda$ in the set of all natural numbers. Then,
Let $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ and $\beta=\sum_{x \in S} \tan ^2\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta-14)^2$ is equal to