Find the principal and general solutions of the equation $\sec x=2$
$\sec x=2$
It is known that $\sec \frac{\pi}{3}=2$ and $\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)=\sec \frac{\pi}{3}=2$
Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{5 \pi}{3}$ Now, sec $x=\sec \frac{\pi}{3}$
$\Rightarrow \cos x=\cos \frac{\pi}{3} \quad\left[\sec x=\frac{1}{\cos x}\right]$
$\Rightarrow 2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$
The solution of equation ${\cos ^2}\theta + \sin \theta + 1 = 0$ lies in the interval
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$
The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is
The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is
If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $