The number of values of $x$ for which $sin2x + sin4x = 2$ is
$0$
$1$
infinite
none of these
If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to
The general solution of $a\cos x + b\sin x = c,$ where $a,\,\,b,\,\,c$ are constants
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is
If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is