If $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ where $x$ and $y$ both lie in second quadrant, find the value of $\sin (x+y)$.
We know that
$\sin (x+y)=\sin x \cos y+\cos x \sin y$.......$(1)$
Now $\cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$
Therefore $\cos x=\pm \frac{4}{5}$
since $x$ lies in second quadrant, cos $x$ is negative.
Hence $\cos x=-\frac{4}{5}$
Now $\sin ^{2} y=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169}$
i.e. $\sin y=\pm \frac{5}{13}$
since $y$ lies in second quadrant, hence sin $y$ is positive. Therefore, $\sin y=\frac{5}{13} .$ Substituting the values of $\sin x, \sin y, \cos x$ and $\cos y$ in $(1),$ we get
$\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$
$\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}$
If $0 \le x < 2\pi $ , then the number of real values of $x,$ which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ is . . .
If $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ and $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ , then the value of $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -
The equation $3\cos x + 4\sin x = 6$ has
If $\sin \theta + \cos \theta = 1$ then the general value of $\theta $ is