If $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ where $x$ and $y$ both lie in second quadrant, find the value of $\sin (x+y)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that

$\sin (x+y)=\sin x \cos y+\cos x \sin y$.......$(1)$

Now $\cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$

Therefore $\cos x=\pm \frac{4}{5}$

since $x$ lies in second quadrant, cos $x$ is negative.

Hence $\cos x=-\frac{4}{5}$

Now $\sin ^{2} y=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169}$

i.e. $\sin y=\pm \frac{5}{13}$

since $y$ lies in second quadrant, hence sin $y$ is positive. Therefore, $\sin y=\frac{5}{13} .$ Substituting the values of $\sin x, \sin y, \cos x$ and $\cos y$ in $(1),$ we get

$\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$

$\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}$

Similar Questions

If $0 \le x < 2\pi $ , then the number of real values of $x,$ which satisfy the equation  $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ is  . .  .

  • [JEE MAIN 2016]

If $\sin \theta  + 2\sin \phi  + 3\sin \psi  = 0$ and $\cos \theta  + 2\cos \phi  + 3\cos \psi  = 0$ , then the value of $\cos 3\theta  + 8\cos 3\phi  + 27\cos 3\psi  = $ 

Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -

The equation $3\cos x + 4\sin x = 6$ has

If $\sin \theta + \cos \theta = 1$ then the general value of $\theta $ is

  • [IIT 1981]