સમીકરણ $|1-i|^{x}=2^{x}$ ના શૂન્યતર પૂર્ણાક ઉકેલોની સંખ્યા શોધો.
$|1-i|^{x}=2^{x}$
$\Rightarrow(\sqrt{1^{2}+(-1)^{2}})^{x}=2^{x}$
$\Rightarrow(\sqrt{2})^{x}=2^{x}$
$\Rightarrow 2^{x / 2}=2^{x}$
$\Rightarrow \frac{x}{2}=x$
$\Rightarrow x=2 x$
$\Rightarrow 2 x-x=0$
$\Rightarrow x=0$
Thus, $0$ is the only integral solution of the given equation. Therefore, the number of nonzero integral solutions of the given equation is $0 .$
અસમતા $|z - 4|\, < \,|\,z - 2|$ એ . . . ભાગ દર્શાવે છે .
જો $z_1 = 1+2i$ અને $z_2 = 3+5i$ , હોય તો ${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\overline Z }_2}{Z_1}}}{{{Z_2}}}} \right) = $
જો $(3 + i)z = (3 - i)\bar z,$તો સંકર સંખ્યા $z$ મેળવો.
જો $z$ અને $w$ બે સંકર સંખ્યા છે કે જેથી $|z|\, = \,|w|$ અને $arg\,z + arg\,w = \pi $. તો $z$ મેળવો.
${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ = ......