Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$
$|1-i|^{x}=2^{x}$
$\Rightarrow(\sqrt{1^{2}+(-1)^{2}})^{x}=2^{x}$
$\Rightarrow(\sqrt{2})^{x}=2^{x}$
$\Rightarrow 2^{x / 2}=2^{x}$
$\Rightarrow \frac{x}{2}=x$
$\Rightarrow x=2 x$
$\Rightarrow 2 x-x=0$
$\Rightarrow x=0$
Thus, $0$ is the only integral solution of the given equation. Therefore, the number of nonzero integral solutions of the given equation is $0 .$
If ${z_1}.{z_2}........{z_n} = z,$ then $arg\,{z_1} + arg\,{z_2} + ....$+$arg\,{z_n}$ and $arg$$z$ differ by a
For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if
Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$