સંકર સંખ્યા $\frac{1+2 i}{1-3 i}$ નો માનાંક તથા કોણાંક શોધો.
Let $z=\frac{1+3 i}{1-3 i},$ then
$z=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}$
$=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i$
Let $z=r \cos \theta+i r \sin \theta$
i.e., $r \cos \theta=\frac{-1}{2}$ and $r \sin \theta=\frac{1}{2}$
On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$
$\Rightarrow r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$\Rightarrow r=\frac{1}{\sqrt{2}}$ $[\text { Conventionally, } r>0]$
$\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2}$ and $\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ [As $\theta$ lies in the $II$ quadrant]
Therefore, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3 \pi}{4}$ respectively.
ધારો કે $\alpha$ અને $\beta$ એ અનુક્રમે સમીકરણ $(\bar{z})^2+|z|=0, z \in \mathrm{C}$ ના તમામ શૂન્યેતર ઉકેલોના સરવાળા તથા ગુણાકાર દર્શાંવે છે. તો $4\left(\alpha^2+\beta^2\right)=$ ..........
જો ${z_1} = a + ib$ અને ${z_2} = c + id$ એ સંકર સંખ્યા છે કે જેથી $|{z_1}| = |{z_2}| = 1$ અને $R({z_1}\overline {{z_2}} ) = 0,$ તો સંકર સંખ્યા ${w_1} = a + ic$ અને ${w_2} = b + id$ ની જોડ એ . . . . નું સમાધાન કરે.
$\frac{{13 - 5i}}{{4 - 9i}}$ નો કોણાંક મેળવો.
જો $Z$ અને $W$ એ સંકર સંખ્યા હોય જેથી $\left| Z \right| = \left| W \right|,$ અને arg $Z$ એ $Z$ નો મુખ્ય કોણાંક બતાવતું હોય.
વિધાન $1:$ જો arg $Z+$ arg $W = \pi ,$ તો $Z = -\overline W $.
વિધાન $2:$ $\left| Z \right| = \left| W \right|,$ $\Rightarrow $ arg $Z-$ arg $\overline W = \pi .$
$\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ નો માનાંક મેળવો.