निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

प्रथम $n$ प्राकृत संख्याएँ

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The mean of first $n$ natural numbers is calculated as follows.

Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$

$\therefore$ Mean $=\frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2}$

Varianvce   $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} $

$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left[ {{x_i} - \left( {\frac{{n + 1}}{2}} \right)} \right]}^2}} $

$ = \frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - \frac{1}{n}\sum\limits_{i = 1}^n {2\left( {\frac{{n + 1}}{n}} \right)} } {x_i} + \frac{1}{n}{\sum\limits_{i = 1}^n {\left( {\frac{{n + 1}}{2}} \right)} ^2}$

$=\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{n}\right)\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n$

$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4}$

$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}$

$=(n+1)\left[\frac{4 n+2-3 n-3}{12}\right]$

$=\frac{(n+1)(n-1)}{12}$

$=\frac{n^{2}-1}{12}$

Similar Questions

$3 n$ संख्याओं का एक समुच्चय है, जिसका प्रसरण $4$ है। इस समुच्चय में, प्रथम $2 n$ संख्याओं का माध्य $6$ है तथा शेष $n$ संख्याओं का माध्य $3$ है। प्रथम $2 n$ संख्याओं में प्रत्येक में $1$ जोड़कर तथा शेष $n$ संख्याओं में प्रत्येक से $1$ घटा कर एक नया समुच्चय बनाया गया है। यदि नये समुच्चय का प्रसरण $k$ है, तो $9 k$ बराबर .............. है ।

  • [JEE MAIN 2021]

यदि प्रत्येक प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ को ' $a$ ', से बढ़ाया जाए जहाँ $a$ एक ऋणात्मक या धनात्मक संख्या है, तो दिखाइए कि प्रसरण अपरिवर्तित रहेगा।

माना $X=\{x \in N : 1 \leq x \leq 17\}$ और $Y=\{a x+b: x \in X$ और $a, b \in R , a>0\}$ यदि $Y$ के अवयव का माध्य और प्रसरण क्रमश $17$ और $216$ है तो $a+b$ बराबर है

  • [JEE MAIN 2020]

निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

तीन के प्रथम $10$ गुणज

एक समूह की पाँच संख्याओं का माध्य $8$ तथा प्रसरण $18$ है तथा दूसरे समूह की $3$ संख्याओं का माध्य $8$ तथा प्रसरण $24$ है। तब संख्याओं के संयुक्त समूह का प्रसरण है