निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
प्रथम $n$ प्राकृत संख्याएँ
The mean of first $n$ natural numbers is calculated as follows.
Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$
$\therefore$ Mean $=\frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2}$
Varianvce $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left[ {{x_i} - \left( {\frac{{n + 1}}{2}} \right)} \right]}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - \frac{1}{n}\sum\limits_{i = 1}^n {2\left( {\frac{{n + 1}}{n}} \right)} } {x_i} + \frac{1}{n}{\sum\limits_{i = 1}^n {\left( {\frac{{n + 1}}{2}} \right)} ^2}$
$=\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{n}\right)\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n$
$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4}$
$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}$
$=(n+1)\left[\frac{4 n+2-3 n-3}{12}\right]$
$=\frac{(n+1)(n-1)}{12}$
$=\frac{n^{2}-1}{12}$
माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है
$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।
माना $X _{1}, X _{2}, \ldots, X _{18}$ अठारह प्रेक्षण हैं, जिनके लिए $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36$ तथा $\sum_{ i =1}^{18}\left( X _{ i }-\beta\right)^{2}=90$ हैं, जहाँ $\alpha$ तथा $\beta$ भिन्न वास्तविक संख्याऐं हैं। यदि इन प्रेक्षणों का मानक विचलन $1$ है, तो $|\alpha-\beta|$ का मान बराबर है
सात प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $8$ तथा $16$ हैं। यदि इनमें से पाँच प्रेक्षण $2,4,10,12,14$ हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।
लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |