Find the mean and variance for the data $6,7,10,12,13,4,8,12$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$6,7,10,12,13,4,8,12$

Mean,    $\bar x = \frac{{\sum\limits_{i = 1}^8 {{x_i}} }}{n}$

$=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$

The following table is obtained

${x_i}$ $\left( {{x_i} - \bar x} \right)$ ${\left( {{x_i} - \bar x} \right)^2}$
$6$ $-3$ $9$
$7$ $-2$ $4$
$10$ $-1$ $1$
$12$ $3$ $9$
$13$ $4$ $16$
$4$ $-5$ $25$
$8$ $-1$ $1$
$12$ $3$ $9$
    $74$

Variance  $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{8} \times 74}  = 9.25$

Similar Questions

If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is

$X$ $c$ $2c$ $3c$ $4c$ $5c$ $6c$
$f$ $2$ $1$ $1$ $1$ $1$ $1$

  • [JEE MAIN 2024]

For $(2n+1)$ observations ${x_1},\, - {x_1}$, ${x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ and $0$ where $x$’s are all distinct. Let $S.D.$ and $M.D.$ denote the standard deviation and median respectively. Then which of the following is always true

Mean and standard deviation of 100 items are 50 and $4,$ respectively. Then find the sum of all the item and the sum of the squares of the items.

The mean and variance of $7$ observations are $8$ and $16$ respectively. If one observation $14$ is omitted a and $b$ are respectively mean and variance of remaining $6$ observation, then $a+3 b-5$ is equal to $..........$.

  • [JEE MAIN 2023]

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ and $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Let the mean, the mean deviation about the mean and the variance of the $5$ observations $9$,$25$, $a$, $b$, $c$ be $18$,$4$ and $\frac{136}{5}$, respectively. Then $2 \mathrm{a}+\mathrm{b}-\mathrm{c}$ is equal to ..............

  • [JEE MAIN 2024]