For $(2n+1)$ observations ${x_1},\, - {x_1}$, ${x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ and $0$ where $x$’s are all distinct. Let $S.D.$ and $M.D.$ denote the standard deviation and median respectively. Then which of the following is always true
$S.D. < M.D.$
$S.D. > M.D.$
$S.D. = M.D.$
Nothing can be said in general about the relationship of $S.D.$ and $M.D.$
The variance of $\alpha$, $\beta$ and $\gamma$ is $9$, then variance of $5$$\alpha$, $5$$\beta$ and $5$$\gamma$ is
The mean and standard deviation of $15$ observations were found to be $12$ and $3$ respectively. On rechecking it was found that an observation was read as $10$ in place of $12$ . If $\mu$ and $\sigma^2$ denote the mean and variance of the correct observations respectively, then $15\left(\mu+\mu^2+\sigma^2\right)$ is equal to$...................$
The $S.D.$ of $5$ scores $1, 2, 3, 4, 5$ is
The mean and variance of the marks obtained by the students in a test are $10$ and $4$ respectively. Later, the marks of one of the students is increased from $8$ to $12$ . If the new mean of the marks is $10.2.$ then their new variance is equal to :
Calculate the mean, variance and standard deviation for the following distribution:
Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
$f_i$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |