For $(2n+1)$ observations ${x_1},\, - {x_1}$, ${x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ and $0$ where $x$’s are all distinct. Let $S.D.$ and $M.D.$ denote the standard deviation and median respectively. Then which of the following is always true
$S.D. < M.D.$
$S.D. > M.D.$
$S.D. = M.D.$
Nothing can be said in general about the relationship of $S.D.$ and $M.D.$
If the variance of $10$ natural numbers $1,1,1, \ldots ., 1, k$ is less than $10 ,$ then the maximum possible value of $k$ is ...... .
The mean and the standard deviation $(s.d.)$ of five observations are $9$ and $0,$ respectively. If one of the observations is changed such that the mean of the new set of five observations becomes $10,$ then their $s.d.$ is?
Find the variance and standard deviation for the following data:
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
The outcome of each of $30$ items was observed; $10$ items gave an outcome $\frac{1}{2} - d$ each, $10$ items gave outcome $\frac {1}{2}$ each and the remaining $10$ items gave outcome $\frac{1}{2} + d$ each. If the variance of this outcome data is $\frac {4}{3}$ then $\left| d \right|$ equals
If the standard deviation of the numbers $-1, 0, 1, k$ is $\sqrt 5$ where $k > 0,$ then $k$ is equal to