Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ and $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Let the mean, the mean deviation about the mean and the variance of the $5$ observations $9$,$25$, $a$, $b$, $c$ be $18$,$4$ and $\frac{136}{5}$, respectively. Then $2 \mathrm{a}+\mathrm{b}-\mathrm{c}$ is equal to ..............

  • [JEE MAIN 2024]
  • A

    $39$

  • B

    $18$

  • C

    $35$

  • D

    $33$

Similar Questions

The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five observations are $2, 4, 10,12,14,$ then the absolute difference of the remaining two observations is 

  • [JEE MAIN 2020]

The mean and standard deviation of six observations are $8$ and $4,$ respectively. If each observation is multiplied by $3,$ find the new mean and new standard deviation of the resulting observations.

Let $9 < x_1 < x_2 < \ldots < x_7$ be in an $A.P.$ with common difference $d$. If the standard deviation of $x_1, x_2 \ldots$, $x _7$ is $4$ and the mean is $\overline{ x }$, then $\overline{ x }+ x _6$ is equal to:

  • [JEE MAIN 2023]

If the variance of the first $n$ natural numbers is $10$ and the variance of the first m even natural numbers is $16$, then $m + n$ is equal to

  • [JEE MAIN 2020]

If $\sum_{i=1}^{5}(x_i-10)=5$ and $\sum_{i=1}^{5}(x_i-10)^2=5$ then standard deviation of observations $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ and $2x_5 + 7$ is equal to-