If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
$5$
$8$
$7$
$6$
The following values are calculated in respect of heights and weights of the students of a section of Class $\mathrm{XI}:$
Height | Weight | |
Mean | $162.6\,cm$ | $52.36\,kg$ |
Variance | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
Can we say that the weights show greater variation than the heights?
Find the mean and variance for the first $n$ natural numbers
Let the mean and variance of $12$ observations be $\frac{9}{2}$ and $4$ respectively. Later on, it was observed that two observations were considered as $9$ and $10$ instead of $7$ and $14$ respectively. If the correct variance is $\frac{m}{n}$, where $m$ and $n$ are co-prime, then $m + n$ is equal to
The mean and standard deviation of $40$ observations are $30$ and $5$ respectively. It was noticed that two of these observations $12$ and $10$ were wrongly recorded. If $\sigma$ is the standard deviation of the data after omitting the two wrong observations from the data, then $38 \sigma^{2}$ is equal to$.........$
The mean and variance of eight observations are $9$ and $9.25,$ respectively. If six of the observations are $6,7,10,12,12$ and $13,$ find the remaining two observations.