$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।
Using Binomial Theorem, the given expression $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ can be expanded as
$\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}$
$ = {\,^3}{C_0}{\left( {3{x^2} - 2ax} \right)^3} + {\,^3}{C_1}{\left( {3{x^2} - 2ax} \right)^2}\left( {3{a^2}} \right) + {\,^3}{C_2}\left( {3{x^2} - 2ax} \right){\left( {3{a^2}} \right)^2} + {\,^3}{C_3}{\left( {3{a^2}} \right)^3}$
$=\left(3 x^{2}-2 a x\right)^{3}+3\left(9 x^{4}-12 a x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)+27 a^{6}$
$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$ ...........$(1)$
Again by using Binomial Theorem, we obtain
$\left(3 x^{2}-2 a x\right)^{3}$
$ = {\,^3}{C_0}{\left( {3{x^2}} \right)^3} - {\,^3}{C_1}{\left( {3{x^2}} \right)^2}(2ax) + {\,^3}{C_2}\left( {3{x^2}} \right){(2ax)^2} - {\,^3}{C_3}{(2ax)^3}$
$=27 x^{6}-3\left(9 x^{4}\right)(2 a x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{3} x^{3}$
$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}$ ............$(2)$
From $(1)$ and $(2),$ we obtain
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
$=27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
$\left(x^4-\frac{1}{x^3}\right)^{15}$ के प्रसार में $x^{18}$ का गुणांक है
$\left(\frac{x}{\cos \theta}+\frac{1}{x \sin \theta}\right)^{16}$ के प्रसार में, यदि $x$ से स्वतंत्र पद का निम्नतम मान $\ell_{1}$ है जब $\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}$ तथा $x$ से स्वतंत्र पद का निम्नतम मान $\ell_{2}$ है जब $\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8}$, तो अनुपात $\ell_{2}: \ell_{1}$ बराबर है
${(1 + x + {x^3} + {x^4})^{10}}$ के विस्तार में ${x^4}$ का गुणांक होगा
$m$ का धनात्मक मान ज्ञात कीजिए जिसके लिए $(1+x)^{m}$ के प्रसार में $x^{2}$ का गुणांक $6$ हो।
माना $\alpha>0$ न्यूनतम संख्या है, जिसके लिए $\left(\mathrm{x}^{\frac{2}{3}}+\frac{2}{\mathrm{x}^3}\right)^{30}$ के प्रसार का एक पद $\beta \mathrm{x}^{-\alpha}, \beta \in \mathbb{N}$ है तो $\alpha$ बराबर है