दिये गए अर्ध वृत्त में एक दीर्घवृत्त को अंतर्गत किया गया है। यह दीर्घवृत्त, अर्धवृत्त के एक वृत्तीय तोरण को दो भिन्न बिंदुओं में तथा अर्धवृत्त के व्यास को छूता है। यदि दीर्घ वृत्त का दीर्घ अक्ष और अर्ध वृत्त का व्यास समानान्तर है तो, ऐसे अधिकतम क्षेत्रफल वाले दीर्घवृत्त की उत्केन्द्रता का मान निम्न होगा:
$\cdot \frac{1}{\sqrt{2}}$
$\frac{1}{2}$
$.. \frac{1}{\sqrt{3}}$
$\sqrt{\frac{2}{3}}$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर
उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसकी नाभियों के निर्देशांक $(±5,0)$ तथा शीर्षों के निर्देशांक $(±13,0)$ हैं।
माना दीर्घवृत्त $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर एक बिंदु $P$ है। माना $P$ से होकर जाने वाली तथा $y$-अक्ष के समांतर रेखा $x^2+y^2=9$ के बिंदु $Q$ पर मिलती है तथा $P$ और $Q$, $X$ अंक्ष के एक ही ओर है | तो $P$ के दिर्ध्वृत पर चलने पर $P Q$ पर एक बिंदु $R$ जिसके लिए $\mathrm{PR}: \mathrm{RQ}=4: 3$ हैं, के बिंदुपथ की उत्केन्द्रता है:
यदि दीर्घवृत्त की नाभियाँ तथा शीर्ष क्रमश: $( \pm 1,\;0)$ तथा $( \pm 2,\;0)$ हों, तो उसका लघु अक्ष है
एक दीर्घवृत्त, जिसका लघु एवं वृहद अक्ष निर्देशक अक्षों $(coordinate\,axes)$ के समान्तर है, $(0,0),(1,0)$ एवं $(0,2)$ से गुजरता है। इसकी एक नाभि $y$-अक्ष पर है। दीर्घवृत्त का उत्केन्द्रता है ?