આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ $b=3,\,\, c=4,$  કેન્દ્ર ઊગમબિંદુ તથા નાભિઓ $x-$ અક્ષ પર હોય. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $b=3,\,\, c=4,$ centre at the origin; foci on the $x$ axis.

since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.

Accordingly, $b=3, \,\,c=4$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore a^{2}=3^{2}+4^{2}=9+16=25$

$\Rightarrow a=5$

Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Similar Questions

જો ઉપવલય $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ એ રેખા $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ ને $x$- અક્ષ પર મળે છે અને રેખા $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ ને $y$-અક્ષ પર મળે છે તો ઉપવલયની ઉકેન્દ્રીતા  . .  . થાય.

  • [JEE MAIN 2022]

જો $E$ એ ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ અને $C$ એ વર્તૂળ ${x^2} + {y^2} = 9$ દર્શાવે છે. જો બિંદુઓ $P$ અને $Q$ અનુક્રમે $(1, 2)$ અને $(2, 1)$ હેાય તો

  • [IIT 1994]

સમીકરણ $ \frac{{{x^2}}}{{10\,\, - \,\,a}}\,\, + \,\,\frac{{{y^2}}}{{4\,\, - \,\,a}}\,\, = \,\,1\,$ એ ઉપવલય છે તેમ ક્યારે દર્શાવે:

જો ઉપવલય $\frac{x^2}{9}+\frac{y^2}{4}=1$ ની જીવાનું મધ્યબિંદુ $(\sqrt{2}, 4 / 3)$ હોય, અને જીવાની લંબાઈ $\frac{2 \sqrt{\alpha}}{3}$ હોય, તો $\alpha=$______.

  • [JEE MAIN 2025]

ઉપવલય $\frac{{{x^2}}}{{36}}\,\, + \;\,\frac{{{y^2}}}{{49}}\,\, = \,\,1$ ના નાભિલંબની લંબાઈ મેળવો.