જો $E$ એ ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ અને $C$ એ વર્તૂળ ${x^2} + {y^2} = 9$ દર્શાવે છે. જો બિંદુઓ $P$ અને $Q$ અનુક્રમે $(1, 2)$ અને $(2, 1)$ હેાય તો
$Q$ એ $C$ ની અંદર પરંતુ $E$ ની બહારની બાજુએ આવેલ છે.
$Q$ એ $C$ અને $E$ ની બહારની બાજુએ આવેલ છે.
$P$ એ $C$ અને $E$ ની અંદરની બાજુએે આવેલ છે.
$P$ એ $C$ ની અંદર પરંતુ $E$ ની બહારની બાજુએ આવેલ છે.
ઉપવલય $9x^2 + 5y^2 - 30y = 0 $ ની ઉત્કેન્દ્રતા ....
એક માણસ રમતના મેદાનમાં અંકિત કેડી પર એવી રીતે દોડે છે કે જેથી બે ધજાના દંડાના અંતરનો સરવાળો અચળ $10$ મી રહે છે. જો બંને ધજાના દંડા વચ્ચેનું અંતર $8$ મી હોય, તો માણસના ગતિમાર્ગનું સમીકરણ શોધો.
પ્રકાશનું કિરણ બિંદુ $(2,1)$ માંથી પસાર થાય ને $y$ - અક્ષ પરનું બિંદુ $P$ થી પરાવર્તિત પામી ને બિંદુ $(5,3)$ માંથી પસાર થાય છે. પરાવર્તિત કિરણ એ ઉપવલયની નિયામિકા બને છે કે જેની ઉત્કેન્દ્રિતા $\frac{1}{3}$ છે અને નજીકના નાભીનું આ નિયામિકા થી અંતર $\frac{8}{\sqrt{53}}$ હોય તો બીજી નિયમિકાનું સમીકરણ મેળવો.
જો $y\,\, = \,\,mx\, + \,\,c$ એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય , તો $c$ નું મૂલ્ય ......
ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ના પરસ્પર લંબ સ્પર્શકોના છેદબિંદુનો બિંદુપથ કેવો હોય ?