Find the equation for the ellipse that satisfies the given conditions: $b=3,\,\, c=4,$ centre at the origin; foci on the $x$ axis.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $b=3,\,\, c=4,$ centre at the origin; foci on the $x$ axis.

since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.

Accordingly, $b=3, \,\,c=4$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore a^{2}=3^{2}+4^{2}=9+16=25$

$\Rightarrow a=5$

Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Similar Questions

Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$ 

      $B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$ 

$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ . 

If set $C$ is singleton set then sum of all possible values of $m$ is

If the tangent at a point on the ellipse $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ meets the coordinate axes at $A$ and $B,$  and  $O$  is the origin, then the minimum area (in sq. units) of the triangle $OAB$  is

  • [JEE MAIN 2016]

If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of $90^{\circ},$ then which of the following relations is TRUE ?

  • [JEE MAIN 2021]

A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.

On the ellipse $4{x^2} + 9{y^2} = 1$, the points at which the tangents are parallel to the line $8x = 9y$ are

  • [IIT 1999]