Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $\frac{x^2}{49}+\frac{y^{2}}{36}=1$ or $\frac{x^2} {7^{2}}+\frac{y^{2}}{6^{2}}=1$

Here, the denominator of $\frac{x^{2}}{49}$ is greater than the denominator of $\frac{y^{2}}{36}$

Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis.

On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=7$ and $b=6$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{49-36}=\sqrt{13}$

Therefore,

The coordinates of the foci are $(\pm \,\sqrt{13}, 0)$

The coordinates of the vertices are $(±7,\,0)$

Length of major axis $=2 a =14$

Length of minor axis $=2 b =12$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{7}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 36}{7}=\frac{72}{7}$

Similar Questions

The distance between the directrices of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1$ is

If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is

  • [AIEEE 2003]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.

Find the equation for the ellipse that satisfies the given conditions: $b=3,\,\, c=4,$ centre at the origin; foci on the $x$ axis.

An ellipse is inscribed in a circle and a point is inside a circle is choosen at random. If the probability that this point lies outside the ellipse is $\frac {2}{3}$ then eccentricity of ellipse is $\frac{{a\sqrt b }}{c}$ . Where $gcd( a, c) = 1$ and $b$ is square free integer ($b$ is not divisible by square of any integer except $1$ ) then $a · b · c$ is