दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है  

  • A

    $\frac{5}{6}$

  • B

    $\frac{3}{5}$

  • C

    $\frac{{\sqrt 2 }}{3}$

  • D

    $\frac{{\sqrt 5 }}{3}$

Similar Questions

माना एक रेखा $L$, रेखाओं $bx +10 y -8=0$ तथा $2 x -3 y =0, b \in R -\left\{\frac{4}{3}\right\}$ के प्रतिच्छेदन बिन्दु से होकर जाती है। यदि रेखा $L$, बिन्दु $(1,1)$ से भी होकर जाती है तथा वृत्त $17\left( x ^2+ y ^2\right)=16$ को स्पर्श करती है, तो दीर्घवृत्त $\frac{x^2}{5}+\frac{y^2}{b^2}=1$ की उत्केन्द्रता है:

  • [JEE MAIN 2022]

ऐसी दो सरल रेखाओं (straight lines) पर विचार कीजिये, जिनमें से प्रत्येक, वृत्त (circle) $x^2+y^2=\frac{1}{2}$ और परवलय (parabola) $y^2=4 x$ दोनों पर ही स्पर्शी (tangent) है। माना कि ये रेखाएं बिंदु $Q$ पर प्रतिच्छेद (intersect) करती हैं। एक ऐसे दीर्घवृत्त (ellipse) पर विचार कीजिये जिसका केंद्र (centre) मूलर्बिंदु (origin) $O(0,0)$ पर है और जिसका अर्ध-दीर्घाक्ष (semi-major axis) $O Q$ है। यदि इस दीर्घवृत के लघु अक्ष (minor axis) की लम्बाई $\sqrt{2}$ है, तब निम्नलिखित में से कौन सा (से) कथन सत्य है (हैं)?

$(A)$ दीर्घवृत्त की उत्केन्द्रता (eccentricity) $\frac{1}{\sqrt{2}}$ है और नाभिलम्ब जीवा (latus rectum) की लम्बाई 1 है

$(B)$ दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ है और नाभिलम्ब जीवा की लम्बाई $\frac{1}{2}$ है

$(C)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध (bounded) क्षेत्र (region) का क्षेत्रफल (area) $\frac{1}{4 \sqrt{2}}(\pi-2)$ है

$(D)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध क्षेत्र का क्षेत्रफल $\frac{1}{16}(\pi-2)$ है

  • [IIT 2018]

उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि  $(3, -3)$ और संगत शीर्ष  $(4, -3)$ है, होगा   

बिंदु $(-3,-5)$ को दीर्घवत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के बिंदुओं से मिलाने वाले रेखाखण्डों के मध्य-बिंदुओं का बिंदुपथ है

  • [JEE MAIN 2021]

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$