रेखाओं $y-x=0, x+y=0$ और $x-k=0$ से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
The equation of the given lines are
$y-x=0 $.....$(1)$
$x+y=0$.....$(2)$
$x-k=0$.....$(3)$
The point of intersection of lines $(1)$ and $(2)$ is given by
$x=0$ and $y=0$
The point of intersection of lines $( 2 )$ and $( 3 )$ is given by
$x=k$ and $y=-k$
The point of intersection of lines $(3)$ and $(1)$ is given by
$x=k$ and $y=k$
Thus, the vertices of the triangle formed by the three given lines are $(0,0),( k ,- k ),$ and $( k , k )$
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),$ and $\left(x_{3}, y_{3}\right)$ is
$\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
Therefore, area of the triangle formed by the three given lines
$=\frac{1}{2}|0(-k-k)+k(k- 0)+k(0+k)|$square units
$=\frac{1}{2}\left|k^{2}+k^{2}\right|$square units
$=\frac{1}{2}\left|2 k^{2}\right|$ square umits
$=k^{2}$ square units
किसी वर्ग का एक शीर्ष $(3, 4)$ एवं विकर्ण $x + 2y = 1$ है, तो दूसरा विकर्ण जो दिये गये शीर्ष से गुजरता है, होगा
एक समबाहु त्रिभुज के आधार का समीकरण $2x - y = 1$ और शीर्ष $(-1, 2)$ है, तब त्रिभुज की भुजा की लम्बाई होगी
यदि एक रेखा $L$, रेखा $5 x-y=1$ पर लंबवत है तथा रेखा $L$ तथा निर्देशांक अक्षों द्वारा बनी त्रिभुज का क्षेत्रफल $5$ है, तो रेखा $L$ की रेखा $x+5 y=0$ से दूरी है
यदि त्रिभुज $ABC$ के शीर्षों के निर्देशांक क्रमश: $(-1, 6)$,$(-3,-9)$, तथा $(5, -8)$ हों तो $C$ से गुजरने वाली माध्यिका का समीकरण होगा
त्रिभुज $A B C$ की भुजा $A B$ तथा $A C$ पर बिंदु $X, Y$ क्रमश: इस प्रकार स्थापित हैं कि रेखाखंड $X Y$ और $B C$ समांतर हैं । निम्नलिखित में से कौन से कथन हमेशा उचित हैं? (यहाँ त्रिभुज $P Q R$ का क्षेत्रफल $[P Q R]$ से निर्देशित किया गया है)
$(I)$ $[B C X]=[B C Y]$
$(II)$ $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$