त्रिभुज $A B C$ की भुजा $A B$ तथा $A C$ पर बिंदु $X, Y$ क्रमश: इस प्रकार स्थापित हैं कि रेखाखंड $X Y$ और $B C$ समांतर हैं । निम्नलिखित में से कौन से कथन हमेशा उचित हैं? (यहाँ त्रिभुज $P Q R$ का क्षेत्रफल $[P Q R]$ से निर्देशित किया गया है)

$(I)$ $[B C X]=[B C Y]$

$(II)$ $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$

  • [KVPY 2015]
  • A

    Neither $I$ nor $II$

  • B

    Only $I$

  • C

    Only $II$

  • D

    Both $I$ and $II$

Similar Questions

यदि रेखाओं $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ के निर्देशांक अक्षो के बीच रेखाखंडो के मध्य बिंदुओं द्वारा बने वक्र पर एक बिंदु $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ है, तो $\alpha$ बराबर है :

  • [JEE MAIN 2023]

किसी त्रिभुज के दो शीर्ष $(5, - 1)$ व $( - 2,3)$ हैं। यदि लम्बकेन्द्र मूल बिन्दु हों, तो तीसरे शीर्ष के निर्देशांक हैं

  • [IIT 1979]

किसी वर्ग का एक शीर्ष $(3, 4)$ एवं विकर्ण $x + 2y = 1$ है, तो दूसरा विकर्ण जो दिये गये शीर्ष से गुजरता है, होगा

एक बिन्दु इस प्रकार गति करता है, कि इस बिन्दु तथा बिन्दुओं $(1, 5)$ तथा $ (3, -7)$ से बने त्रिभुज का क्षेत्रफल $21$ वर्ग इकाई है, तब बिन्दु का बिन्दुपथ होगा

यदि एक समचतुर्भुज की दो भुजाएँ, रेखाओं $x-y+1=0$ तथा $7 x-y-5=0$ की दिशा में हैं तथा इसके विकर्ण बिंदु $(-1,-2)$ पर प्रतिच्छेद करते हैं, तो इस समचतुर्भुज का निम्न में से कौन-सा शीर्ष है?

  • [JEE MAIN 2016]