सारणिकों का प्रयोग करके $(1,2)$ और $(3,6)$ को मिलाने वाली रेखा का समीकरण ज्ञात कीजिए।
$y=2 x$
$y=3 x$
$y=4 x+7$
$y=2 x+9$
प्रत्येक में $k$ का मान ज्ञात कीजिए यदि त्रिभुजों का क्षेत्रफल $4$ वर्ग इकाई है जहाँ शीर्षबिंदु निम्नलिखित हैं:
$(\mathrm{k}, 0),(4,0),(0,2)$
$A,B,C$ तथा $P,Q,R$ के प्रत्येक मान के लिए $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ का मान है
$\alpha $ के किस मान के लिए समीकरण निकाय ${(\alpha + 1)^3}x + {(\alpha + 2)^3}y - {(\alpha + 3)^3} = 0$, $(\alpha + 1)x + (\alpha + 2)y - (\alpha + 3) = 0,$ $x + y - 1 = 0$ संगत है
$\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$=
माना $\theta \in\left(0, \frac{\pi}{2}\right)$ है। यदि रैखिक समीकरण निकाय
$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$ का अतुच्छ हल है, तो, $\theta$ का मान है