Find area of the triangle with vertices at the point given in each of the following: $(1,0),(6,0),(4,3)$
$\frac{11}{2}$ square units
$\frac{17}{2}$ square units
$\frac{15}{2}$ square units
$\frac{19}{2}$ square units
If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is
Show that points $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear
Let the area of the triangle with vertices $A (1, \alpha)$, $B (\alpha, 0)$ and $C (0, \alpha)$ be $4\, sq.$ units. If the point $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then $\beta$ is equal to
The system of equations $kx + 2y\,-z = 1$ ; $(k\,-\,1)y\,-2z = 2$ ; $(k + 2)z = 3$ has unique solution, if $k$ is equal to
Consider the following system of questions $\alpha x+2 y+z=1$ ; $2 \alpha x+3 y+z=1$ ; $3 x+\alpha y+2 z=\beta$ . For some $\alpha, \beta \in R$. Then which of the following is NOT correct.