The system of equations $kx + 2y\,-z = 1$ ; $(k\,-\,1)y\,-2z = 2$ ; $(k + 2)z = 3$ has unique solution, if $k$ is equal to
$-2$
$-1$
$0$
$1$
If $\alpha ,\beta \ne 0$ and $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ and $\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\; = K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ ,then $K=$ . . . . . .
Evaluate the determinants
$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$
The values of $\lambda$ and $\mu$ for which the system of linear equations
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions are, respectively
For real numbers $\alpha$ and $\beta$, consider the following system of linear equations:
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$. If the system has infinite solutions, then $\alpha+\beta$ is equal to $.....$
If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|,$ then $x$ is equal to