If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and  $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is

  • A

    $1$

  • B

    $2$

  • C

    $-2$

  • D

    $4$

Similar Questions

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

If for some $\alpha$ and $\beta$ in $R,$ the intersection of the following three planes  $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ is a line in $\mathrm{R}^{3},$ then $\alpha+\beta$ is equal to

  • [JEE MAIN 2020]

Solution of the equation $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ are

Consider the system of equations

$ x-2 y+3 z=-1 $ ; $ -x+y-2 z=k $ ; $ x-3 y+4 z=1$

$STATEMENT -1$ : The system of equations has no solution for $\mathrm{k} \neq 3$. and

$STATEMENT - 2$ : The determinant $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & \mathrm{k} \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $\mathrm{k} \neq 3$.

  • [IIT 2008]

The system of equations $x+y+z=6$, $x+2 y+5 z=9$, $x+5 y+\lambda z=\mu$ has no solution if

  • [JEE MAIN 2025]