The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in

  • A

    $A.P.$

  • B

    $G.P.$

  • C

    $H.P.$

  • D

    None of these

Similar Questions

The product $(32)(32)^{1/6}(32)^{1/36} ...... to\,\, \infty $ is

If $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + .......\infty $,  then the value of $r$ will be

The $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a $G.P.$ are $p, q$ and $s,$ respectively. Show that $q^{2}=p s$

$\alpha ,\;\beta $ are the roots of the equation ${x^2} - 3x + a = 0$ and $\gamma ,\;\delta $ are the roots of the equation ${x^2} - 12x + b = 0$. If $\alpha ,\;\beta ,\;\gamma ,\;\delta $ form an increasing $G.P.$, then $(a,\;b) = $

If the sum of $n$ terms of a $G.P.$ is $255$ and ${n^{th}}$ terms is $128$ and common ratio is $2$, then first term will be