The ${20^{th}}$ term of the series $2 \times 4 + 4 \times 6 + 6 \times 8 + .......$ will be
$1600$
$1680$
$420$
$840$
The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is
The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in
The sum of first four terms of a geometric progression $(G.P.)$ is $\frac{65}{12}$ and the sum of their respective reciprocals is $\frac{65}{18} .$ If the product of first three terms of the $G.P.$ is $1,$ and the third term is $\alpha$, then $2 \alpha$ is ....... .
Let ${a_1},{a_2}...,{a_{10}}$ be a $G.P.$ If $\frac{{{a_3}}}{{{a_1}}} = 25,$ then $\frac {{{a_9}}}{{{a_{ 5}}}}$ equal
The sum to infinity of the following series $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + ........$, will be