Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
We have
$27 x ^{3}+ y ^{3}+ z ^{3}-9 xyz =(3 x )^{3}+( y )^{3}+( z )^{3}-3(3 x )( y )( z )$
$\therefore $ Using the identity $x ^{3}+ y ^{3}+ z ^{3}-3 xyz =( x + y + z )\left( x ^{2}+ y ^{2}+ z ^{2}- xy - yz - zx \right)$, we have $(3 x )^{3}+( y )^{3}+( z )^{3}-3(3 x )( y )( z ) $
$=(3 x + y + z )\left[(3 x )^{2}+ y ^{2}+ z ^{2}-(3 x \times y )-( y \times z )-( z \times 3 x )\right]$
$=(3 x + y + z )\left(9 x ^{2}+ y ^{2}+ z ^{2}-3 x y - yz -3 zx \right)$
Use suitable identities to find the products : $(3 x+4)(3 x-5)$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=k x^{2}-\sqrt{2} x+1$
Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer. $y+\frac{2}{y}$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(t)=2+t+2 t^{2}-t^{3}$
Factorise : $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$