Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

We have

$27 x ^{3}+ y ^{3}+ z ^{3}-9 xyz =(3 x )^{3}+( y )^{3}+( z )^{3}-3(3 x )( y )( z )$

$\therefore $ Using the identity $x ^{3}+ y ^{3}+ z ^{3}-3 xyz =( x + y + z )\left( x ^{2}+ y ^{2}+ z ^{2}- xy - yz - zx \right)$,  we have  $(3 x )^{3}+( y )^{3}+( z )^{3}-3(3 x )( y )( z ) $

$=(3 x + y + z )\left[(3 x )^{2}+ y ^{2}+ z ^{2}-(3 x \times y )-( y \times z )-( z \times 3 x )\right]$

$=(3 x + y + z )\left(9 x ^{2}+ y ^{2}+ z ^{2}-3 x y - yz -3 zx \right)$

Similar Questions

Use suitable identities to find the products :  $(3 x+4)(3 x-5)$

Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=k x^{2}-\sqrt{2} x+1$

Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer.  $y+\frac{2}{y}$

Find $p(0)$, $p(1)$ and $p(2)$ for  of the following polynomials : $p(t)=2+t+2 t^{2}-t^{3}$

Factorise : $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$