Factorise : $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$ 4 x ^{2}+9 y ^{2}+16 z ^{2} +12 xy -24 yz -16 xz$

$=(2 x )^{2}+(3 y )^{2}+(-4 z )^{2}+2(2 x )(3 y )+2(3 y )(-4 z )+2(-4 z )(2 x ) $           [Using Identity $V $]

$=(2 x +3 y -4 z )^{2} $

$=(2 x +3 y -4 z )(2 x +3 y -4 z ) $

Similar Questions

Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given : $\boxed{\rm {Area}\,:25{a^2} - 35a + 12}$

Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$

Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x$.

Find the value of each of the following polynomials at the indicated value of variables :  $q(y)=3 y^{3}-4 y+\sqrt{11}$ at $y=2$