Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=k x^{2}-\sqrt{2} x+1$
$-\sqrt{2}+1$
$\sqrt{2}-1$
$\sqrt{2}+1$
$-\sqrt{2}-1$
Use suitable identities to find the products : $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$
Factorise $8 x^{3}+27 y^{3}+36 x^{2} y+54 x y^{2}$
Factorise the following using appropriate identities : $9 x^{2}+6 x y+y^{2}$
Factorise $x^{3}-23 x^{2}+142 x-120$
Write the coefficients of $x^2$ in each of the following :
$(i)$ $\frac{\pi}{2} x^{2}+x$ $ (ii)$ $\sqrt{2} x-1$