सारणिक $\Delta=\left|\begin{array}{rrr}1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0\end{array}\right|$ का मान ज्ञात कीजिए
$-50$
$-51$
$-52$
$-53$
सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ का मान होगा
यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$,तो समीकरण $x =$
$\lambda$ के उन वास्तविक मानों की संख्या जिनके लिए रैखिक समीकरण निकाय $2 x+4 y-\lambda z=0$; $4 x+\lambda y+2 z=0$; $\lambda x+2 y+2 z=0$ के अनंत हल हैं
समीकरण निकाय $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$ का एक अशून्य हल होगा, यदि $\lambda $ का वास्तविक मान है
$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $