सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ का मान होगा
${\alpha ^2} + {\beta ^2}$
${\alpha ^2} - {\beta ^2}$
$1$
$0$
यदि $\left| {\,\begin{array}{*{20}{c}}5&3&{ - 1}\\{ - 7}&x&{ - 3}\\9&6&{ - 2}\end{array}\,} \right| = 0$, तो $ x$ का मान होगा
यदि $p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda + t = $ $\left| {\,\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda }&{\lambda - 1}&{\lambda + 3}\\{\lambda + 1}&{2 - \lambda }&{\lambda - 4}\\{\lambda - 3}&{\lambda + 4}&{3\lambda }\end{array}\,} \right|,$ तो $t$ का मान है
यदि $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = k(a + b + c)({a^2} + {b^2} + {c^2}$ $ - bc - ca - ab)$, तो $k =$
माना कि $\alpha, \beta$ एवं $\gamma$ वास्तविक संख्याएं (real numbers) हैं। निम्न रैखिक समीकरण निकाय (system of linear equations) पर विचार कीजिए।
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
List-$I$ की प्रत्येक प्रविष्टि (entry) का List-$II$ की सही प्रविष्टियों (entries) से मिलान कीजिये।
List - $I$ | List - $II$ |
($P$)यदि $\beta=\frac{1}{2}(7 \alpha-3)$ एवं $\gamma=28$, तब निकाय का(के) | ($1$) क अद्वितीय हल (unique solution) है |
($Q$)यदि $\beta=\frac{1}{2}(7 \alpha-3)$ एवं $\gamma \neq 28$, तब निकाय का(के) | ($2$)कोई हल नहीं है |
($R$) Iयदि $\beta \neq \frac{1}{2}(7 \alpha-3)$ जहाँ $\alpha=1$ एवं $\gamma \neq 28$, तब निकाय का(के) |
($3$)अनंत हल हैं |
($S$) यदि $\beta \neq \frac{1}{2}(7 \alpha-3)$ जहाँ $\alpha=1$ एवं $\gamma=28$, तब निकाय का(के) | ($4$) $x=11, y=-2$ एवं $z=0$ एक हल है |
($5$) $x=-15, y=4$ एवं $z=0$ एक हल है |
सही विकल्प है:
रैखिक समीकरण निकाय
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
के लिए निम्न में से कौन सा सही नहीं है ?