यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$,तो समीकरण $x =$
$1, 9$
$-1, 9$
$-1, -9$
$1, -9$
दो न्याय पासे फेंके जाते है। उनमें प्राप्त अंको को $\lambda$ तथा $\mu$ लेकर रैखिक समीकरण निकाय $x+y+z=5$ , $x+2 y+3 z=\mu$ , $x+3 y+\lambda z=1$ बनाया जाता है। यदि इस निकाय का अद्वितीय हल होने की प्रायिकता $p$ है तथा इस निकाय का कोई भी हल न होने की प्रायिकता $q$ है, तो -
यदि $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$and $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$,तो $B$ का मान होगा
रेखिक समीकरण निकाय $x+y+z=4 \mu$, $x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$ जहाँ $\lambda, \mu \in \mathrm{R}$ हैं का विचार कीजिए। निम्न कथनों में से कौन सा सही नहीं है ?
$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\beta - \alpha )}&{\cos (\gamma - \alpha )}\\{\cos (\alpha - \beta )}&1&{\cos (\gamma - \beta )}\\{\cos (\alpha - \gamma )}&{\cos (\beta - \gamma )}&1\end{array}} \right|$ का मान होगा
यदि रैखिक समीकरण निकाय $ x-2 y+z=-4 $; $ 2 x+\alpha y+3 z=5 $; $ 3 x-y+\beta z=3$ के अनंत हल हैं, तो $12 \alpha+13 \beta$ बराबर है