समीकरण निकाय $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$ का एक अशून्य हल होगा, यदि $\lambda $ का वास्तविक मान है
$0$
$1$
$3$
$\sqrt 3 $
यदि $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ तो क्रमित युग्म $(A, B)$ बराबर है
यदि $a, b, c$ शून्येतर वास्तविक संख्याएँ हैं तथा यदि समीकरण निकाय $(a-1) x=y+z$; $(b-1) y=z+x$; $(c-1) z=x+y$ का एक अतुच्छ हल है, तो $a b+b c+c a$ बराबर है
निम्नलिखित में से कौन सा कथन सही है।
सारणिक $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ का मान होगा
$\alpha $ के किस मान के लिए समीकरण निकाय ${(\alpha + 1)^3}x + {(\alpha + 2)^3}y - {(\alpha + 3)^3} = 0$, $(\alpha + 1)x + (\alpha + 2)y - (\alpha + 3) = 0,$ $x + y - 1 = 0$ संगत है