$a$ भुजा वाले एक समबाहु त्रिभुज $ABC$ के शीर्ष $A$ और $B$ पर समान आवेश $q$ रखे हैं। बिन्दु $C$ पर विद्युत क्षेत्र का परिमाण होगा
$\frac{q}{{4\pi {\varepsilon _0}{a^2}}}$
$\frac{{\sqrt 2 \,q}}{{4\pi {\varepsilon _0}{a^2}}}$
$\frac{{\sqrt 3 \,q}}{{4\pi {\varepsilon _0}{a^2}}}$
$\frac{q}{{2\pi {\varepsilon _0}{a^2}}}$
दो बिन्दु आवेश $A$ तथा $B$ जिनके परिमाण क्रमश: $+8 \times 10^{-6} C$ तथा $-8 \times 10^{-6} C$ हैं, '$d$' दूरी पर रखे हुयें हैं। यदि आवेशों के मध्य बिन्दु $O$ पर विद्युत क्षेत्र $6.4 \times 10^4 NC ^{-1}$ है, तो बिन्दु आवेशों $A$ तथा $B$ के मध्य दूरी ' $d$ ' $............m$ होगी
${10^{ - 6}}$ किलोग्राम पानी की बूंद पर ${10^{ - 6}}\,C$ आवेश है। इसके भार को सन्तुलित करने के लिए कितना विद्युत क्षेत्र आरोपित किया जाना चाहिए ($g = 10$ मीटर/सैकण्ड$^{2}$)
$\pm 10 \,\mu C$ के दो आवेश एक-दूसरे से $5.0\, mm$ दूरी पर स्थित हैं। $(a)$ इस द्विधुव के अक्ष पर द्विध्रुव के केंद्र $O$ से चित्र $(a)$ में दशांए अनुसार, धनावेश की ओर $15 \,cm$ दूरी पर स्थित किसी बिदु $P$ पर तथा $(b)$ द्धिध्रुव के अक्ष के अभिलंबवत $O$ से, चित्र $(b)$ में दर्शाए अनुसार गुजरने वाली रेखा से $15\, cm$ दूरी पर स्थित किसी बिंदु $G$ पर विध्युत क्षेत्र ज्ञात कीजिए।
$\sigma$ सतह आवेश घनत्व से $R$ त्रिज्या की समानरूप से आवेशित एक चकती $x-y$ तल में रखी है, जिसका केन्द्र मूलबिन्दु पर है। $z$-अक्ष के अनुदिश मूल बिन्दु से $Z$ दूरी पर विधुत क्षेत्र की तीव्रता ज्ञात कीजिए।
भुजा $a$ वाले एक वर्ग के कोनों पर तीन आवेश $q / 2$, $q$ और $q / 2$ चित्रानुसार रखे हैं। वर्ग के कोने $D$ पर विद्युत क्षेत्र $(E)$ का परिमाण होगा