Equal charges $q$ are placed at the vertices $A$ and $B$ of an equilateral triangle $ABC$ of side $a$. The magnitude of electric field at the point $C$ is
$\frac{q}{{4\pi {\varepsilon _0}{a^2}}}$
$\frac{{\sqrt 2 \,q}}{{4\pi {\varepsilon _0}{a^2}}}$
$\frac{{\sqrt 3 \,q}}{{4\pi {\varepsilon _0}{a^2}}}$
$\frac{q}{{2\pi {\varepsilon _0}{a^2}}}$
A total charge $q$ is divided as $q_1$ and $q_2$ which are kept at two of the vertices of an equilateral triangle of side a. The magnitude of the electric field $E$ at the third vertex of the triangle is to be depicted schematically as a function of $x=q_1 / q$. Choose the correct figure.
A ring of radius $R$ is charged uniformly with a charge $+\,Q$ . The electric field at a point on its axis at a distance $r$ from any point on the ring will be
Two point charge $-q$ and $+q/2$ are situated at the origin and at the point $(a, 0, 0)$ respectively. The point along the $X$ - axis where the electric field vanishes is
Which of the following is deflected by electric field
A vertical electric field of magnitude $4.9 \times 10^{5} N / C$ just prevents a water droplet of a mass $0.1\, g$ from falling. The value of charge on the droplet will be ........ $\times 10^{-9} \;C$ $\left(\right.$ Given $\left.g =9.8 m / s ^{2}\right)$