$52$ पत्तों की एक गड्डी में से $5$ पत्तों के संचय की संख्या निर्धारित कीजिए, यदि $5$ पत्तों के प्रत्येक चयन (संचय) में तथ्यतः एक बादशाह है

Vedclass pdf generator app on play store
Vedclass iOS app on app store

From a deck of $52$ cards, $5 -$ card combinations have to be made in such a way that in each selection of $5$ cards, there is exactly one king.

In a deck of $52$ cards, there are $4$ kings.

$1$ king can be selected out of $4$ kings in $^{4} C _{1}$ ways.

$4$ cards out of the remaining $48$ cards can be selected in $^{48} C_{4}$ ways. Thus, the

required number of $5 -$ card combinations is $^{4} C_{1} \times^{48} C_{4}$.

Similar Questions

एक कक्षा में $b$ लड़के तथा $g$ लड़कियाँ हैं। यदि इस कक्षा में से $3$ लड़के तथा $2$ लड़कियाँ चुनने के तरीकों की संख्या $168$ है, तो $b +3 g$ बराबर है $..........$

  • [JEE MAIN 2022]

${ }^{n-1} C_r=\left(k^2-8\right){ }^n C_{r+1}$ है यदि और केवल यदि :

  • [JEE MAIN 2024]

$r$ का वह मान, जिसके लिये ${ }^{20} C _{ r }{ }^{20} C _{0}+{ }^{20} C _{ r -1}{ }^{20} C _{1}$ $+{ }^{20} C _{ r -2}{ }^{20} C _{2}+\ldots{ }^{20} C _{0}{ }^{20} C _{ r }$ अधिकतम है

  • [JEE MAIN 2019]

14) यदि एक प्राकृत संख्या $n$ का न्यूनतम मान इस प्रकार है कि $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, जहाँ $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}$, तब $n$ का मान है

  • [KVPY 2017]

$21$ अंग्रेजी की पुस्तकें तथा $19$ हिन्दी की पुस्तकें एक पंक्ति में कितने प्रकार से रखी जा सकती हैं ताकि हिन्दी की कोई भी दो पुस्तकें साथ-साथ न हों