14) यदि एक प्राकृत संख्या $n$ का न्यूनतम मान इस प्रकार है कि $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, जहाँ $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}$, तब $n$ का मान है
$12$
$13$
$14$
$15$
यदि $n$ और $r$ दो धनात्मक पूर्णांक इस प्रकार हैं कि $n \ge r,$ तब $^n{C_{r - 1}}$$ + {\,^n}{C_r} = $
एक चुनाव में $5$ उम्मीदवार हैं एवं तीन रिक्त स्थान हैं। एक मतदाता अधिकतम तीन उम्मीदवारों को मत दे सकता है, तो मतदाता कुल कितने प्रकार से मत दे सकता है
यदि $n$ सम हो और $^n{C_r}$ का मान महत्तम हो, तो $r = $
यदि ${ }^{n} C _{8}={ }^{n} C _{2},$ तो ${ }^{n} C _{2}$ ज्ञात कीजिए।
$6$ आदमी एवं $4$ औरतों में से $5$ सदस्यों की एक समिति कितने प्रकार से बनाई जा सकती है, यदि समिति में कम से कम $1$ औरत अवश्य हो