Let $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ and $g :[0, \infty) \rightarrow R$ be functions such that

$f(0)=g(0)=0$

$\Psi_1( x )= e ^{- x }+ x , \quad x \geq 0$

$\Psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0$

$f( x )=\int_{- x }^{ x }\left(| t |- t ^2\right) e ^{- t ^2} dt , x >0$

and

$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$

($1$) Which of the following statements is $TRUE$ ?

$(A)$ $f(\sqrt{\ln 3})+ g (\sqrt{\ln 3})=\frac{1}{3}$

$(B)$ For every $x>1$, there exists an $\alpha \in(1, x)$ such that $\psi_1(x)=1+\alpha x$

$(C)$ For every $x>0$, there exists a $\beta \in(0, x)$ such that $\psi_2(x)=2 x\left(\psi_1(\beta)-1\right)$

$(D)$ $f$ is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

($2$) Which of the following statements is $TRUE$ ?

$(A)$ $\psi_1$ (x) $\leq 1$, for all $x>0$

$(B)$ $\psi_2(x) \leq 0$, for all $x>0$

$(C)$ $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$, for all $x \in\left(0, \frac{1}{2}\right)$

$(D)$ $g(x) \leq \frac{2}{3} x^3-\frac{2}{5} x^5+\frac{1}{7} x^7$, for all $x \in\left(0, \frac{1}{2}\right)$

  • [IIT 2021]
  • A

    $C,D$

  • B

    $C,A$

  • C

    $C,B$

  • D

    $A,B,C$

Similar Questions

Let  $f(x)$  satisfy the requirement of lagranges mean value theorem in $[0,2]$ . If $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ for all $x \in \left[ {0,2} \right]$, then-

For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$, the correct statement$(s)$ is (are) :

$(A)$ $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$

$(B)$ $(f(c))^2+f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$

$(C)$ $(f(c))^2+3 f(c)=(g(c))^2+g(c)$ for some $c \in[0,1]$

$(D)$ $(f(c))^2=(g(c))^2$ for some $c \in[0,1]$

  • [IIT 2014]

Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then

  • [JEE MAIN 2021]

Mean value theorem $f(b) -f(a) = (b -a) f '(x_1);$ from $a < x_1 < b,$ if $f(x) = 1/x$ then $x_1 = ?$

Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval