Verify Mean Value Theorem, if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval $[a, b],$ where $a=1$ and $b=3 .$ Find all $c \in(1,3)$ for which $f^{\prime}(c)=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given function $f$ is $f(x)=x^{2}-5 x^{2}-3 x$

$f,$ being a polynomial function, is continuous in $[1,3],$ and is differentiable in $(1,3)$

Whose derivative is $3 x^{2}-10 x-3$

$f(1)=1^{2}-5 \times 1^{2}-3 \times 1=-7, f(3)=3^{3}-3 \times 3=27$

$\therefore \frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(1)}{3-1}=\frac{-27-(-7)}{3-1}=-10$

Mean Value Theorem states that there exist a point $c \in(1,3)$ such that $f^{\prime}(c)=-10$

$f^{\prime}(c)=-10$

$\Rightarrow 3 c^{2}-10 c-3=10$

$\Rightarrow 3 c^{2}-10 c+7=0$

$\Rightarrow 3 c^{2}-3 c-7 c+7=0$

$\Rightarrow 3 c(c-1)-7(c-1)=0$

$\Rightarrow(c-1)(3 c-7)=0$

$\Rightarrow c=1, \frac{7}{3}$ where $c=\frac{7}{3} \in(1,3)$

Hence, Mean Value Theorem is verified for the given function and $c=\frac{7}{3} \in(1,3)$ is the only point for which $f^{\prime}(c)=0$

Similar Questions

Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=x^{2}-1$ for $x \in[1,2]$

The function $f(x) = x(x + 3){e^{ - (1/2)x}}$ satisfies all the conditions of Rolle's theorem in $ [-3, 0]$. The value of $c$ is

Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$

If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............