$\mathrm{R}$ ત્રિજ્યા ધરાવતા ગોળા પર વિજભારઘનતા $\rho$ છે.જો તેમાથી $\frac{\mathrm{R}}{2}$ ત્રિજ્યા ધરાવતો ભાગ કાપી નાખવામાં આવે તો $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ નો ગુણોત્તર કેટલો થાય? જ્યાં $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ અને $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ બિંદુ $\mathrm{A}$ અને બિંદુ $\mathrm{B}$ પાસે વિદ્યુતક્ષેત્ર છે.

830-1330

  • [JEE MAIN 2020]
  • A

    $\frac{18}{54}$

  • B

    $\frac{21}{34}$

  • C

    $\frac{17}{54}$

  • D

    $\frac{18}{34}$

Similar Questions

રેખીય વિદ્યતભાર ઘનતા $\lambda$ ધરાવતી $R$ ત્રિજયાની અર્ધવર્તુળાકાર રીંગના કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલું થાય?  $\left( {k = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$

$(i)$ રેખા, $(ii)$ પૃષ્ઠ, $(iii)$ કદ  પરના વિધુતભારના સતત વિતરણના લીધે કોઈ પણ બિંદુ પાસે ઉદભવતાં વિધુતક્ષેત્રનું સુત્ર મેળવો.

 

$R$ ત્રિજયાનો નકકર ગોળા પર સમાન રીતે વિદ્યુતભાર  ફેલાયેલો છે.તો વિદ્યુતક્ષેત્ર $(E)$ અને કેન્દ્રથી અંતર $r$ વચ્ચેનો સંબંધ શું થાય? (r < R)

 $12 \,cm$ ત્રિજ્યાના એક ગોળાકાર સુવાહકની સપાટી પર $1.6 \times 10^{-7} \;C$ વિદ્યુતભાર નિયમિત રીતે વિતરિત થયેલો છે.

$(a)$ ગોળાની અંદર

$(b)$ ગોળાની તરત બહાર

$(c)$ ગોળાના કેન્દ્રથી $18 \,cm$ અંતરે આવેલા બિંદુએ - વિદ્યુતક્ષેત્ર કેટલું છે?

સમાન રીતે ભારીત અવાહક ધનગોળાના વીજક્ષેત્રના ફેરફારને વિવિધ બિંદુઓ આધારીત આલેખીય રીતે દર્શાવી શકાય છે.

  • [JEE MAIN 2023]