રેખીય વિદ્યતભાર ઘનતા $\lambda$ ધરાવતી $R$ ત્રિજયાની અર્ધવર્તુળાકાર રીંગના કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલું થાય?  $\left( {k = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$

  • A

    શુન્ય

  • B

    $\frac{{k\lambda }}{R}$

  • C

    $\frac{{2k\lambda }}{R}$

  • D

    $\frac{{k\pi \lambda }}{R}$

Similar Questions

$R$ ત્રિજ્યા ધરાવતો અનંત ધન નળાકારમાં અચળ વિજભાર કદ ઘનતા $\rho$ છે. તેના અંદર $R/2$ ત્રિજ્યા ધરાવતી ગોળીય બખોલ છે. જેનું કેન્દ્ર અક્ષ પર છે. નળાકારની અક્ષથી $2R$ અંતરે આવેલ $P$ બિંદુએ વિદ્યુતક્ષેત્ર $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ હોય તો $K$ નું મૂલ્ય કેટલું હશે?

બે $+\sigma$ પૃષ્ઠ વિજભાર ઘનતા ધરાવતા અનંત સમતલને એક બીજા સાથે $30^{\circ} $ ના ખૂણે મૂકવામાં આવે છે, તો તેમની વચ્ચેના ક્ષેત્રમાં વિદ્યુતક્ષેત્ર કેટલું થાય?

  • [JEE MAIN 2020]

ગાઉસના પ્રમેય પરથી કુલંબનો નિયમ સમજાવો.

વિધુતભારિત ગોળાની બહારના વિસ્તારમાં ગાઉસના પ્રમેય પરથી વિધુતક્ષેત્રનું સૂત્ર મેળવો.

દરેક પ્લેટની સપાટીનું ક્ષેત્રફળ $\mathrm{S}$ હોય તેવી બે સમાન વાહક પ્લેટો $\alpha $ અને $\beta $ જડિત કરેલી છે અને તેમના પર અનુક્રમે  $-\mathrm{q}$  અને  $\mathrm{q}$ વિધુતભાર છે. જ્યાં $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ એક ત્રીજી પ્લેટ $\gamma $ ને આ બે પ્લેટોની વચ્ચે મૂકવામાં આવે છે તે મુક્ત રીતે ગતિ કરી શકે છે તથા તેના પર $\mathrm{q}$ વિધુતભાર છે જે આકૃતિમાં દર્શાવ્યું છે. ત્રીજી પ્લેટને મુક્ત કરતાં તે $\beta $  પ્લેટ સાથે અથડાય છે. એવું ધારવામાં આવે છે કે અથડામણ સ્થિતિસ્થાપક છે અને $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભારને વહેંચાવા માટે અથડામણો વચ્ચેનો પૂરતો સમય છે.

$(a)$ અથડામણ પહેલા $\gamma $ પ્લેટ પર લાગતું વિધુતક્ષેત્ર શોધો. 

$(b)$ અથડામણ બાદ $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભાર શોધો. 

$(c)$ અથડામણ પછી $\gamma $ પ્લેટનો $\mathrm{B}$ પ્લેટથી $\mathrm{d}$ અંતરે હોય ત્યારનો વેગ શોધો.