$R$ ત્રિજયાનો નકકર ગોળા પર સમાન રીતે વિદ્યુતભાર ફેલાયેલો છે.તો વિદ્યુતક્ષેત્ર $(E)$ અને કેન્દ્રથી અંતર $r$ વચ્ચેનો સંબંધ શું થાય? (r < R)
$E \propto {r^{ - 2}}$
$E \propto {r^{ - 1}}$
$E \propto r$
$E \propto {r^2}$
આકૃતિમાં એક ખૂબ મોટું ધન વિદ્યુતભારિત સમતલ પૃષ્ઠ દર્શાવેલ છે. $P _{1}$ અને $P _{2}$ એ વિદ્યુતભાર વિતરણથી $l$ અને $2 l$ જેટલા લઘુત્તમ અંતરે બે બિંદુુઓ છે. જે પૃષ્ઠ વીજભાર ઘનતા $\sigma$ હોય, તો $P_{1}$ અને $P_{2}$ આગળ વિદ્યુતક્ષેત્ર $E_{1}$ અને $E_{2}$ માટે સાચો વિકલ્પ પસંદ કરો
$10\,cm$ ત્રિજયા ધરાવતા સમાન રીતે વિદ્યુતભારીત અવાહક ગોળાથી $20\,cm$ અંતરે વિદ્યુતક્ષેત્ર $100\, V/m$ છે.તો કેન્દ્રથી $3 \,cm$ અંતરે વિદ્યુતક્ષેત્ર કેટલા .....$V/m$ થાય?
$R$ ત્રિજ્યા ધરાવતા ઘન ગોળની વિજભાર ઘનતા $0 \leq r \leq R$ માટે $\rho = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ મુજબ આપવામાં આવે છે. તો બોલની બહાર વિદ્યુતક્ષેત્ર કેટલું હશે?
પરમાણુ માટેના પ્રારંભિક મોડેલમાં, $Ze$ વિદ્યુતભાર ધરાવતું ધન વિધુતભારિત બિંદુવતુ ન્યુક્લિયસ તેની આસપાસ $R$ ત્રિજ્યા સુધી નિયમિત ઘનતાના ઋણ વિધુતભાર વડે ઘેરાયેલું છે. સમગ્રપણે પરમાણુ તટસ્થ છે. આ મૉડેલ માટે ન્યુક્લિયસથી $r$ અંતરે વિધુતક્ષેત્ર કેટલું હશે ?
કુલંબના નિયમ પરથી ગાઉસનો પ્રમેય સમજાવો.