ધારોકે $3 n$ સંખ્યાનું વિચરણ $4$ આપેલ છે. જો આ ગણમાં પ્રથમ $2 n$ સંખ્યાનો મધ્યક $6$ હોય અને બાકીની સંખ્યા $n$ નો મધ્યક $3$ છે. એક નવો ગણ બનાવીએ કે જેમાં પ્રથમ $2 n$ સંખ્યામાં $1$ ઉમેરીએ અને પછીની $n$ સંખ્યામાંથી $1$ બાદ કરીયે તો આ નવા ગણનું વિચરણ $k$ હોય તો $9 k$ મેળવો.
$76$
$68$
$82$
$56$
વર્ગના $100$ વિર્ધાર્થીંઓના ગણિતના ગુણનો મધ્યક $72$ છે. જો છોકરાઓની સંખ્યા $70 $ હોય અને તેમના ગુણનો મધ્યક $75$ હોય તો વર્ગમાં છોકરીઓનાં ગુણનો મધ્યક શોધો ?
$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$ ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$ બરાબર નીચેના પૈકી કયું હશે ?
જો તો વિચરણ $\sigma^2$ =................................
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
જો $x_i $ નું પ્રમાણિત વિચલન $10$ હોય તો ($50 + 5x_i$)નું વિચરણ કેટલું હશે ?
ધારો કે $5$ અવલોકનો $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ નાં મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ છે.જો પ્રથમ $4$ અવલોકનોમાં મધ્યક અને વિચરણ અનુક્રમે $\frac{7}{2}$ અને $a$ હોય,તો $\left(4 a+x_{5}\right)=\dots\dots$